Search results for " Mechanical Engineering"
showing 10 items of 623 documents
Centrifuge tests on strip footings on sand with a weak layer
2017
Tests on small-scale physical models of a strip footing resting on a dense sand bed containing a thin horizontal weak soil layer were carried out at normal gravity (1 g ). The results, reported in a companion paper, point out that the weak layer plays an important role in the failure mechanism and the ultimate bearing capacity of the footing if it falls within the ground volume relevant to the behaviour of the sand–footing system. The same problem was also investigated by means of centrifuge tests on reduced-scale models at 25 g and 40 g . The results of these tests, reported and discussed in this paper, confirm that failure mechanisms are governed substantially by the presence of the weak…
Predicting stiffness and strength of birch pulp:Polylactic acid composites
2016
This paper studies failure of birch pulp–polylactic acid composites. Stiffness and strength are calculated using the theory of short fibre composites and the results are compared to experimental data. The results differed from the experimental values by 0–6%. With less aligned fibres the short fibre theory is not feasible. The performance of the 40 wt% birch pulp – polylactic acid composite is predicted with X-ray microtomography based finite element modelling, and the results are compared with experiments. Stiffness results differed from experiments by 1–17% . By adding into the models a third material phase representing the interface between the fibres and the matrix, the stress–strain c…
Preventing the oil film instability in rotor-dynamics
2016
Horizontal rotor systems on lubricated journal bearings may incur instability risks depending on the load and the angular speed. The instability is associated with the asymmetry of the stiffness matrix of the bearings around the equilibrium position, in like manner as the internal hysteretic instability somehow, where some beneficial effect is indeed obtainable by an anisotropic configuration of the support stiffness. Hence, the idea of the present analysis is to check if similar advantages are also obtainable towards the oil film instability. The instability thresholds are calculated by usual methods, such as the Routh criterion or the direct search for the system eigenvalues. The results …
A Rayleigh-Ritz approach for postbuckling analysis of variable angle tow composite stiffened panels
2018
Abstract A Rayleigh-Ritz solution approach for generally restrained multilayered variable angle tow stiffened plates in postbuckling regime is presented. The plate model is based on the first order shear deformation theory and accounts for geometrical nonlinearity through the von Karman’s assumptions. Stiffened plates are modelled as assembly of plate-like elements and penalty techniques are used to join the elements in the assembled structure and to apply the kinematical boundary conditions. General symmetric and unsymmetric stacking sequences are considered and Legendre orthogonal polynomials are employed to build the trial functions. A computer code was developed to implement the propose…
Stress field model for strengthening of shear-flexure critical RC beams
2017
A model for the design of shear-flexure critical reinforced concrete elements strengthened with fiber-reinforced polymer (FRP) sheets and plates is presented. The model is based on the stress field approach and the equilibrium method and accounts for the different failure modes of FRP, focusing on the debonding of the FRP from the concrete surface. The efficiency of the model in the strength assessment of beams reinforced with FRP by the prediction of the shear-flexure capacity is checked by corroborating the results of several experimental tests found in the literature. Moreover, the presented model's capacity to reproduce experimental behavior is compared with the formulations suggested b…
From fracture to damage mechanics: a behavior law for microcracked composites using the concept of crack opening mode
2010
International audience; Many studies have been carried out in order to build a coherent macroscopic behavior law for a composite containing microcracks. All of them are only partially coherent and none of them is complete. This study proposes a hyperelastic behavior law for a microcracked composite, respecting all the conditions associated with the damage activation/deactivation, stress/strain relation continuity, induced anisotropy and the Clausius–Duhem inequality. This approach is based on the definition of the Crack Opening Mode for Damage Mechanics as it exists in Fracture Mechanics.
Study of the Formability of Laminated Lightweight Metallic Materials
2017
The main objective of this work was to test the formability of laminated materials. Laminated materials are considered a good choice when parts with reduced weight are considered. Thus, a laminated material, aluminum - polypropylene - aluminum (Al-PP-Al), as sheet 1.2 mm and 1.4 mm thickness was used. Before processing the material by means of unconventional plastic deformation, its formability was determined by running the Nakajima test. After obtaining the forming limit curves, the material was machined by means of incremental forming.
Angular Trapping of Anisometric Nano-Objects in a Fluid
2012
We demonstrate the ability to trap, levitate, and orient single anisometric nanoscale objects with high angular precision in a fluid. An electrostatic fluidic trap confines a spherical object at a spatial location defined by the minimum of the electrostatic system free energy. For an anisometric object and a potential well lacking angular symmetry, the system free energy can further strongly depend on the object's orientation in the trap. Engineering the morphology of the trap thus enables precise spatial and angular confinement of a single levitating nano-object, and the process can be massively parallelized. Since the physics of the trap depends strongly on the surface charge of the objec…
A Model for High-Cycle Fatigue in Polycrystals
2018
A grain-scale formulation for high-cycle fatigue inter-granular degradation in polycrystalline aggregates is presented. The aggregate is represented through Voronoi tessellations and the mechanics of individual bulk grains is modelled using a boundary integral formulation. The inter-granular interfaces degrade under the action of cyclic tractions and they are represented using cohesive laws embodying a local irreversible damage parameter that evolves according to high-cycle continuum damage laws. The consistence between cyclic and static damage, which plays an important role in the redistribution of inter-granular tractions upon cyclic degradation, is assessed at each fatigue solution jump,…
Energy-Efficient Resource Optimization with Wireless Power Transfer for Secure NOMA Systems
2018
In this paper, we investigate resource allocation algorithm design for secure non-orthogonal multiple access (NOMA) systems empowered by wireless power transfer. With the consideration of an existing eavesdropper, the objective is to obtain secure and energy efficient transmission among multiple users by optimizing time, power and subchannel allocation. Moreover, we also take into consideration for the practical case that the statistics of the channel state information of the eavesdropper is not available. In order to address the optimization problem and its high computational complexity, we propose an iterative algorithm with guaranteed convergence to deliver a suboptimal solution for gene…